Upgrade Plan for DV26

August 28th, 2017
August 28th, 2017

Executive summary

We will be upgrading the GE software and computational infrastructure in late September (from DV25 to DV26). The reasons and implications for your projects are explained below in detail.

To migrate the CNI sequences to this new environment, the CNI development team needs time on the scanner (we estimate about 12 hours).  As most of you know, the schedule is very full. Thus, starting September 1st and continuing for a few weeks, the CNI will have priority for any released time and all protocol development time.

If you have already booked protocol development time, we may contact you to negotiate an alternative slot. We will return to a more open policy after the transition is completed. Thank you for your cooperation.

Background

Like many GE sites, we are now planning for a significant upgrade.  This upgrade, DV26, includes new computational hardware and software (but no new MR gear, such as coils or gradients).  This upgrade includes features that will eventually be valuable for many of you.

At minimum before we make the upgrade, we will be making sure the existing CNI-modified sequences (cni_epi, cni_epi2, muxarcepi, muxarcepi2, sprt, cni_3dgrass, cni_efgre3d,  cni_ir_epi and Probe-MEGA) will all be working at DV26 as they do at DV25, together with offline reconstruction for the mux and spiral sequences using NIMS.  Other existing product sequences are not noticeably changed in this upgrade. As a result, the transition for users should in most cases be seamless.

A beneficial feature of the new system is that GE has incorporated the SMS methods that were implemented by Adam, Kangrong, Bob, Hua  and Matt Middione (GE) at the CNI.  GE refers to their implementation as Hyperband (love the marketing folks; multiband was not enough).  The DV26 product includes only a Hyperband DTI sequence, but GE has agreed to enable us to use a beta version of the Hyperband fMRI sequence.

The user-interface for Hyperband will operate as any normal sequence. Simply prescribe the whole volume you wish to acquire and the online reconstruction will perform the slice and inplane acceleration unaliasing so that undistorted images appear in the mini-viewer and scanner image database. The new computational hardware from GE will perform these reconstructions, eventually reducing the burden on our aging CNI computers.

However, there are some limitations of the new product Hyperband sequences.  GE has not yet implemented our preferred reconstruction algorithm for Hyperband acquisitions (split-slice GRAPPA). Also, there are some support features in the CNI versions of these sequences (e.g. triggering selection) that are not in the product Hyperband sequences.  The CNI team will make modifications to these Hyperband sequences to support the specific CNI features as well as augment the product reconstruction.  Some of these updates, in particular supporting online split-slice-GRAPPA reconstruction, will not be completed until after our migration to DV26.

As a result of these limitations to the Hyperband sequences, and until we have the opportunity to confirm these sequences have the same performance of our existing SMS sequences, we advise users to continue to use the CNI SMS sequences (muxarcepi, muxarcepi2). However we expect that we will be able to recommend users migrate to these Hyperband sequences sometime later this year.  We will keep you posted on our progress.

The CNI Team


Comment

You must be registered (with a sunet id) and logged in to post a comment.